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INTRODUCTION

The subject of spline functions has developed extremely rapidly during
the last ten to fifteen years and, perhaps, the major reason for this is the dual
nature of the spline. On the one hand, it has been historically characterized
as a real-valued function with global smoothness properties pieced together
locally by null solutions of certain differential operators. On the other hand,
it can frequently be characterized as the solution of a minimization problem
subject to certain linear constraints. The approach taken in this paper is the
variational approach and the functional B(u, u) which is minimized is the
bilinear form associated v.ith an arbitrary self-adjoint operator .11 which is
permitted to be singular, provided the leading coefficient has an integrable
reciprocal and vanishes only at the endpoints.

This paper then unifies and extends certain concepts in Lucas [9] where
nonsingular self-adjoint operators are considered, in Ciarlet, Natterer and
Varga [2] where Hermite splines associated with singular self-adjoint operators
are considered, and in Dailey [3] which is an extension of [2]. Moreover, it
contains as special cases most of the notions of spline functions previously
defined by means of nonnegative bilinear forms B(u, u), associated with
certain nonsingular self-adjoint ordinary differential operators, with linear
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equality constraints (cf. [7,8]). In particular, it is shown in this paper that
a spline function may be obtained whenever B(u, u) is nonnegative over
a suitable function space for the broad class of singular self-adjoint operators
considered here.

The paper is divided into three sections, the first of which treats the general
problem of existence. Here it is shown that a solution of the minimization
problem need not exist (Theorem 2) in all cases. A sufficient condition for
existence in terms of the eigenfunctions of an operator which is a natural
translate of A is given in Theorem 1 and from this follows the existence
result in the case when B(u, u) is nonnegative. Theorem 3 concludes this
section by showing that existence of the spline always holds if, included
among the linear equality constraints, are sufficiently many-point evaluations,
or derivative evaluations. Thus, Theorem 3 provides a practical existence
criterion to supplement the abstract criterion of Theorem 1.

Section 2 of the paper provides an analytical characterization of the spline,
illustrating the previously mentioned duality, in the case where the linear
equality constraints are so-called extended Hermite-Birkhoff functionals.
The principal result is described in Theorem 4 which extends corresponding
concepts in [7].

Section 3 of the paper deals with error estimates, or, more precisely, the
order of approximation of the splines to smooth functions whose higher
order derivatives are square integrable with respect to a weight determined
by the leading coefficient of A. These results reduce, in the nonsingular case,
to those of [8] and comprise the content of Theorems 5-8. These convergence
results are especially useful in the use of Galerkin subspaces to approximate
solutions of two-point boundary value problems.

I. EXISTENCE

Let A be the formally self-adjoint 2n-th order differential operator

n

A :::: L (-1)' Dj[alx) Dj],
j=O

where we assume that

(i) aix) > 0 for all x E (a, b),

(ii) 11an E Li[a, b],

(iii) aj E Ora, b], 0 :s;; j < n,

d
D--

d
,

x

an E Cn(a, b).

(1.1)

(1.2)

Let H denote the linear space of all real-valued functions f,. defined on
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[a, b], such that Dn-lj is absolutely continuous, and Alan D"'fE V[a, oj.
Define the bilinear form B(u, v) as follows:

n .0

B(ll, v) === I J ai(X) Diu(x) DJD(x) dx,
j=O a

for all U,!J E H. (1.3)

It follows easily that B(u, v) is defined for all u, v E H, and moreover, that
there exists a constant C', possibly negative, such that

B(u, u) - ran(x)[Dnu(x)]2 dx ;?: C'II U 11~-1.2
a

for all u E (1.4)

where i! '11,,-1.2 is the usual Sobolev n - 1,2 norm, defined from

.b ( j )
(u, V)i.2 ~ J I DkU(X) DkV(X) dx.

a k=O <

We now show that there exist positive constants 01. and C such that

o 71-1

B(u, u) + ell u [:;,-1.2 ;?: 01. [J Gn(x)[Dnu(x)]2 dx +I [Diu(aW]
a )=0

(1.5)

for all 1,1 E H. (1.6)

From the identity

it follows from the Schwarz inequality and (l.2ii) that

IDn-lu(a)1 2

< (b ~ a) (II D,,-lU 1I~.2 + (b a)[( an~X) dX] .( an(x)[Dnu(x)F dX)

«-b2 )('I!UII~_l,,+KJ'o an(x)[DnU(x)]2dx).- a n ~- a /

From Sobolev's inequality [1, p. 32]. there exists a positive constant y such
that

n-2

y II U 1I~-1,2 ~ I [DJu(a)]2.
j=O

The result of (1.6) then follows from (1.4) and the above two inequalities.
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We will now show that the following inequality is satisfied.

~ ,,~

B(u, u) + C II U 117.,2 ?: ex [j a,,(x)[D"u(x)]2 dx + ~ [D j u(a)]2] , (1.7)
a J=O

for all u E H, for all 0 ~jo ~ n - 1, where ex and C = Cj are positive•constants. Indeed, (1.7) for jo = 0 (which implies (1.7) for jo ?: 0) follows
from (1.6) and [12, Theorem 1] the inequality, valid for 0 < e ~ 1, and
o~j < n:

II u 11;,2 ~ y(en
- H II via" D"u 11~,2 + c i II U 11~.2)' u E H[a, b],l

for some positive constant y. Since the constant C of (1.7) may be expected
to decrease with increasingjo , we retain the flexibility of (possibly) choosing
jo > 0 in what follows.

We now define an inner product on the space H as follows.

(u, V)D = B(u, v) + qu, V)i•• 2 , (1.8)

with jo and C as in (1.7). To show that H is a Hilbert space under (', .)D ,

we first show that there exist positive constants K j , 0 ~j ~ n - 1, such that

O~j~n-1, for all u E H. (1.9)

From (1.7) it is clear that

b "-1

II u I\~ ?: ex S a,,(x)[D"u(x)]2 dx + ex L [DJu(aW
a ~o

Since Dn-Ifis absolutely continuous,

for all u E H. (LlO)

D"-1j(t) = f Dnf(x) dx + D"-1j(a), and therefore
a

I D"-1j(t)1 2 ~ 2 [[f D''f(x) dxf + [D"-1j(a)]2].
a

However,

[
t ]2 b I 1 I 2S D''f(x) dx ~ [J . j=' Va,,(x) D':t(x) dX]
a a va,,(x)

~ II :" t .S: a,,(x)[D"f(x)]2 dx

- K f a,,(x)[D'1(X)]2 dx,
a

1 A version of this inequality has been obtained independently by M. Silverstein
(unpublished).
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where we have used Cauchy-Schwarz and (1.2i)-(1.2ii). Thus, from (1.10)

! D"'-Y(t)12

;( 2 [K ( an(x)fDnf(x)]il dx +~~ fDf(a)J2] ;( : max(K, 1)11 uli~ .

Since this holds for all t E [a, bJ, we have proven (1.9) for j = 11 1. The
inequalities for 0 ;(j ~ 11 - 2 follow similarly. From (1.9) and (1.10) it is
clear that H is a Hilbert space under 11 . liD, since convergence in II 'IID implies
L co convergence in all derivatives to order 11 _.- I, and convergence of the
n-th derivative in the weighted Lil-norm. Finally, from (1.9), it then follows
that there exist positive constants K/, 0 ;(j ;( 11 - 1, such that

Ii u lib K/ II u Il~.2 for all U E H, o <. j 11 - L (UI)

Let M = {(-tj}7~1 be any set of bounded linear functionals, linearly indepen
dent and continuous over H, and FE Em an m-vector of real numbers. "We
then make the following definition.

DEFINITION 1. S E H is called a A-spline, interpolating f with respect to
11-'/ {Uj}:7:1 , if s solves the following minimization problem:

where

B(s, s) = min B(u, u),
UEU(r)

U(r) {uEH: (-tjU = ri, 1 ;(};( m}.

(1.12)

We remark that, as a consequence of (I.9), point evaluations of a function
and its derivatives up to order n - 1 are continuous linear functionals over
the space H. We shall be initially concerned with proving the existence of
A-splines. In order to do so in the most general manner, we shall require
some technical results.

By definition, the space H is contained in WJ,2[a, b], for each 0 ;( j n - 1.
We nOw show that the injection of H into WJ,2[a, b] is compact for each
o ;(j ;( 12 - 1. Suppose {Um}:~l is a sequence in H such that II Urn l!v <. C
for all m ~ 1. We must show there is a subsequence {Umk}r~l convergent in
Wi,ilea, bJ. From (1.9), there exists a constant c' such that {II Diu", IlL"'} ;( c',
for aU In ~ 1, 0 ;(j -;( 12 - 1. Thus, the sequence {Dn-lum}:~l is uniformly
bounded.
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= II: Dnum(t) dtr
~ [f 1_ )-=. va1l(t) DnUm(t)1 dtf

.c Van(t)

which, from (1.10), becomes

Since llan E LI[a, b], it follows that f~[llanCt)]dt is less than E whenever
Ix - y I < See, an), and hence the family {Dn-Ium}~=1 is also equicontinuous.
Therefore, there exists a subsequence {Dn-lumk }~1=1 which is convergent

1
in LifO, and hence in P. Now consider the subsequence {Dn-2umJ~=1'

l...} 1

Again this is a uniformly bounded, equicontinuous sequence, and we can
extract a subsequence convergent in P. Continuing this process, we obtain
a subsequence of the {Um}:=l which is convergent in Wi ,2[a, b} for all
o~j ~ n - 1. Thus, in particular, for jo as in (1.7)

is compact, (1.13)

where I is the injection mapping of H into WJo.2.

Withjo as in (1.7), it follows from (1.11) that

for all U E H, (1.14)

for some constant K > O. Thus, from the Friedrichs extension theorem
(10, p. 335], there exists a self-adjoint positive definite transformation

onto· "A : 2iJA C H --,. WJo,~ such that

for all u EO 2iJA , V E H. (1.15)

The domain !?fiA of A is a linear subspace, dense in H. Moreover, A-I exists
and is a self-adjoint operator from Wio.2 ->-!?fiA , and, from (1.13), is compact
when viewed as a transformation from Wio,2 ->- Wjo,2. Thus A has a discrete
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spectrum P'J}~:'l such that Ar+ 00 as j --+ 00, and the eigenfunctions {P);~l

of A are orthonormal and complete in Wio ,2. Moreover, since

the {<pj}J:=l are orthogonal in H with respect to (', -) D • The set {<pj}j~l is aiso
complete in H, since if (<Pi' w) D = 0 for all i, then (<Pi, w)D = (A ({Yi , W)Jo ,2 =
'\i«({Yi' W)io,2 = O. Since A; =1= 0 for all i, then w = O. .

Since A may not be defined on all of H, we want to show that

for all u, L' E H. (U6)

Consider the transformation Al/2:!!}All' --+ WJo,2. Since A is self-adjoint,
so is A l /2 on !!}Al/' = {u E Wio,2: Li AJCu, PJ)7

0
,2 < ro}:> f2rA . But since

for all U E H,

it follows from the relation (u, <PJ)D/Aj = (u, <Pj)J
o
.2 that Al/2 has domain

containing H. It then follows that

Now define the operator Jt by

for aU u, L' E H.

o
Jlu = I (-l)i D2iU

'i~O

Then from the relation

for U E H n C2io(a, b) (1.17)

we have, for each UE Co"'(a, b) and each eigenfunction ({Y of A corresponding
to eigenvalue A,

i.e.,

«({Y, Au + C../tu - A"/{U)O,2 = 0

which shows [6, Sec. 8] that A is an eigenvalue and rp a C2n(a, b) eigen
function of

(1.18)
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(1.18) thus has a discrete positive spectrum and a complete orthogonal
system of eigenfunctions in Hand Wio•2, which coincide with the spectrum
and eigenfunctions of A.

We are now prepared to state a basic theorem concerning the existence
of A-splines.

THEOREM 1. Let M = {/-Lj}j~l be any set of linear functionals, linearly
independent and continuous over H. If there exist eigenvalues 0 < Al ~ ...
~'\>"-1 < C and ,\,. = ... = '\t-1 = C of (1.18), with C as in (1.7), let
111 '00" 11t-1 be the corresponding eigenfunctions. Then the minimization
problem (1.12) has a solution for all f E Em if U(O) is orthogonal in H to
{111 ,... , 11·'·-1}· In this case the solution is unique if and only if U(O) n span
(11,' '00" 11t-1) = {O}. In particular, if B(u, u) ~ 0 for all u E H, then a solution
of (1.12) always exists. Ifjo = 0 then JI! = I in (1.18).

Proof The subspace U(O) is closed in H and of finite co-dimension.
For a given r E Ern, choose any element fo of U(r) (such an fo exists because
of the linear independence of the {/-Li}j':,l) and hold it fixed. The hyperplane
{fo - u: u E U(O)} is also closed, and of finite co-dimension. Solving (1.12)
is equivalent to solving the following problem

B(s, s) = mi!J, B(fo - u,fo - u).
UEUIO)

Write the orthogonal decomposition of fo and u E U(O):

(1.19)

fo =h +f2 +fa

u = U1 + U2 + Ua

where f1 , U1 E span (111 , , 11,.-1)

f2 , U2E span (11r , , 11t-1)

f3' ua E span (cpt , ).

Then U1 = 0 by our assumption on M, and therefore

B(fo - u,fo - u) = lifo - u ll~ - C Ilj~ - U 11~.2

= Ilfl W- CIlfl1170.2

+ IIf2 - u2 11t - C Ilh - u21170 .2

+ Ilia - uallt - C IIf3 - ua1170.2 •

But the terms on the first line of the decomposition are constant, and the term
on the second line is zero. Thus, to show (1.19) has a solution, we need merely
show that there exists a minimum of the quantity

Ilia - uall~ - Cilia - ua1170.2
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- t-l -
over the set UiO) = {U3: there exists U2 = Li=r i'iigJi such that U2 + Us E U(O)}.
Let

be the orthogonal complement of (PI"'" PH) in H. Let Pt be the projection
of H onto H t , i.e.,

for all fE H.

Then PtU({j) = Us(O) and since the null space of Pt is a finite dimensional
space it follows [4, Lemma 2.1] that UiO) is closed and convex. More
over H t is also a Hilbert space under the norm !I' lit defined from
Ii . II;' - II . II~ - CII . 1I~0,2 . For, At > C and

II flj2 = (Al/2'f Al/2f)· >-: Allf-il~ Q
" I D , Jo.2 ~ t , Jo ....

Therefore,

for all IE Ht .

Il.l!l~ - C 11/1!70 .2 = il - ; )ll/llt + ; I!fllt - c Il/i170 ,2
\ I\t - I't

--- (1 C )I'j'112
- C Ilj",2-::/ - ~_ 1 'D = 1 I liD for all f E HI ,

where C1 is a positive constant. It is immediate, moreover, that

liliit ~ II/II~ - C 11/1170 ,2 for all IEHt .

Thus the norms II . liD and II . lit are equivalent on H t . Therefore, the set
Is - Us(O) is a closed and convex subset of H t under the norm II . lit, and
the quantity

possesses a unique minimum over UlO), as was to be shown. Thus (1.12) has a
solution S for any rE Ern. If Sf is any solution of (1.12), it follows from the
above arguments that s - Sf E span (Pr ,... , rpt-I)' Moreover, fL(s - Sf) = 0
for all fL E M, and hence s - Sf E U(O) n span (Pr ,... , Pt-I>' The spline s
is therefore unique if U(O) n span (Pr ,... , Pt-i) = {OJ. Conversely, if
UE U(O) n span (p,. ,..., Pt-I>, then S + u also satisfies (1.12). Hence, if sis
unique, U = 0 and U(O) n span {p,- ,... , Pt-I} = {OJ.
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If B(u, u) ~ 0 then clearly

B(u, u) + C II U 1170.2 ;? C II U 1170.2 •

Hence all the eigenvalues of the operator A are greater than or equal to C
and a solution of (1.12) always exists.

Finally, the last statement of the theorem follows from earlier remarks.

COROLLARY 1. If s E U(r) is a solution of (1.12), then

B(s, h) = 0 for all h E UfO). (1.20)

Conversely, if (1.20) holds and U(O)-L ~ {<PI ,... , <PH}, then s solves (1.12).

Proof If B(s, h) = 0 for all h E UfO), let 81 be any other element of U(r).
Then, using only the bi-linearity and symmetry of B(u, v),

B(SI , SI) = B(s, SI) + B(SI - s, SI)

= B(s, s) + 2B(s, SI - s) + B(SI - S, SI - s).

But, since SI - s E UfO), then B(s, SI - s) = 0, and by the assumption that
U(O)-L ~ {<PI"'" <Pr-l}, B(SI - S, SI - S) ~ O. Hence B(S1' S1) ;? B(s, s) and
S solves (1.12).

Let s be any A-spline interpolating r with respect to M. Let hE UfO).
Then, since s + Eh E U(r) for any E,

B(s + Eh, s + Eh) = B(s, s) + 2EB(s, h) + E2B(h, h) ;? B(s, s) for any E.

Hence

then (1.21) => 3B(s, h)2 ~ 0
B(h, h)

2EB(s, h) + E2B(h, h) ~ O.

There are three cases, depending upon the sign of B(h, h).

(a) If B(h, h) = 0, then (1.21) => B(s, h) = 0;

(b) If B(h, h) < 0, choose

B(s, h)
E = B(h, h) ;

and hence B(s, h) = 0;

(c) If B(h, h) > 0, choose

(1.21)

B(s, h)
E = - B(h, h);

and again B(s, h) = O.

then (1 21) _ [B(s, h)]2 ::? 0
. => B(h, h) ~
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As a partial converse of Theorem 1, we prove
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THEOREM 2. If U(O) () span <CPI ,... , CP·r-l) ~ {O}, where {CPI ,... , CPr-I}
are the eigenfunctions described in Theorem 1, then no solution of (1.12)
exists for any i' E Em.

Proof Suppose U(O) () span <CPI ,..., CPr-I) :J {cp} and suppose U E U(i')
solves (1.12). Then for any constant k, u + kcp E U(r), and

B(u + kcp, u + kcp) = B(u, u) + 2kB(u, rp) + k 2B(cp, cp).

But B(rp, rp) = II cP I!~ - ell cP 11;0.2 < O. There are three cases to examine,

(a) If B(u, rp) = 0 then B(u + krp, U + hpj < B(u, u) for any k ¥= 0;

(b) If B(u, cp) < 0 take k > 0; then B(u + krp, u + kcp) < B(u, u);

(c) If B(u, rp) > 0 take k < 0; then B(u + kcp, u + krp) < B(u, u).

Thus we arrive at a contradiction.

DEFINITION 2. Given a differential operator A satisfying (I.2), and a
set Ai of linear functionals, linearly independent and continuous over H,
we say that M generates a A-poised interpolation problem if there exists
a solution of (1.12) for any i' E Em. Sp(/l, M) is defined to be the set of all
functions s E H such that s satisfies (1.12) for some rE Em.

The following result is then an easy consequence of Theorem 1.

COROLLARY 2. Let {rpi}~:} be as in Theorem 1. M generates a A-poised
problem if U(O)1-:) {CPI ,••• , CPr-I}' Sp(A, M) is then afinite-dimensional subspace
of H of dimension m + dim{U(O) () span<rpr ,... , <Pt-l)}'

The result ofTheorem 1 does not give very practical conditions for existence
and uniqueness of A-splines in some cases. We now show that existence and
uniqueness is guaranteed provided M contains "enough" point evaluations.

We first prove the following easy estimates. Let a = Xo :::;; Xl < X2 < '"
< XN :::;; XN+I = b be a partition of the interval [a, bJ, where hi = Xi+! - Xi,

0:::;; i :::;; N, and.J = maXi hi' Then, for allfE H,

Ii D'iII2.2

!V

:::;; 4 I [D:t(Xi)]23 + 23(b - a)11 Dj+~fllz2 ,
i~l

o :::;;j:::;; n - 2,

(1.22)
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where

For,

w1(g,8) = sup IJ:,H Ig(y)j dy I.
Itl<;8 ~

",.xHe[a.b]

Dij(x) = r Di+lf(t) dt + Dif(Xi), for x E [Xi, Xi+l], 1 ~ i ~ N,
x,

and

Thus,

I DJf(x)12 ~ 2 [[S:o Di+lf(t) dtf + [Dif(Xi)]2],
,

and

1 ~ i ~ N,

Similarly,

II D111~2[a''''I] ~ f'I 2 Uf' Di+y(t) dtf + [D'l(XI )]2] dx. (1.25)
a '"1

Hence, for 0 ~j ~ n - 2,

N

1\ D'illhxI.b] ~ 2(b - Xl) .1 II Di+Ylli2[a.b] + 2 L [D'l(Xi)]2.1,
i=l

and
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from which (1.22) follows. For the case j = n - 1, we have that

for all x E [x, , X'+1]' 0 <; i <; N. The result of (1.23) foHows as above from
(1.24)-(1.26).

THEOREM 3. Fix a choice ofj for some 0 <; n - 1. Let

denote a partition of [a, b] such that {fL, : fLJ Dij(xiii ), 1 <; i <; Nj } C JVI.
Define h~jl == Xi~1 - Xpl, 0 <; i <; NJ , and 3 w = max, hiiJ • Assume that
there exists an x' E [a, b] such that lvI J {fL, : fLJ = D'f(x'), 0 <; i <;.i - 1}.
Then for 3 U) sufficiently small, there exists a unique A-spline interpolating f
with respect to M for each rE Em.

Proof We first show that for 3(j) sufficiently small, there exists a constant
L j > 0 such that II . 11M, defined from

1I u !I~ =B(u, u) + L J L [jL(u)]2 (l.27)
;.tEM

is a norm on H, equivalent to II . liD .
First, there exist constants Cj > 0 such that

i-I

Ilu111.2 <; Cj [L [D"U(X')]2 iIDjuli~2],
k=O

o j <; n - L (1.28)

Since A(j) <; b - a, we have from (1.22) and (1.23) that

J-l N;

II U111.2 <; Cj [L [Dku(x')}2 + 4(b - a) L [Dfu(x?»)12
k=O i=l

and

o <;J <; n - 2, (1.29)

n-2

II u li;-1.2 <; Cn- 1 [L [Dk u(x')]2
k=O

N n-l
4(b - a) L [Dn-lU(X~n-l»]2

.=1

+ 2Wl (1-, 3(n-lJ)(b - a) X fa an(t)[D"u(t)]2dtl (130)
an a -
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We complete the proof only in the cases 0 <j < n - 2. From (1.8), (1.29),
and (Lll), it follows that

i-I Nj

II u II~ < B(u, u) + CCj [L [DkU(X')]2 + 4(b - a) I [DiU(X~J)]2
k~ i~

+ 2 K~ 3(j)(b - a)11 u ll~], 0 <j < n - 2.
1+1

Thus, there exist constants L i > 0 such that

II u II~ < B(u, u) + L j L lJL(U)]2 + L j 3{illl u ll~ ,
).LEU

o <j < n - 2.

For all partitions ,j(j) such that L j 3(j) < K < 1, it follows that

II u II~ ;? (1 - K)ll u II~ .

By the continuity of the functionals of M, and the definition of 11 • liD, it
then follows immediately that the norms II . 11M and II . liD are equivalent.

This result follows similarly if j = n - 1, as a consequence of (1.30) and
the fact that

II u ll'b ;? ~ra n(t)[D"u(t)J2 dt.
a

To show that (Ll2) has a solution for 3(j) sufficiently small, we note that
minimizing B(u, u) over VCr) is equivalent to minimizing II u Il~ over VCr).
But for 3(1) sufficiently small, H is a Hilbert space under II . 11M, and VCr) is
a closed and convex subset of H. Thus, (1.12) has a unique solution.

2. CHARACTERIZATION

In cases where 111 consists only of point evaluations, A-splines can be
completely characterized as piecewise solutions of Au = 0, satisfying certain
generalized continuity conditions. The following definitions and results are
extensions of those of [7] to A-splines.

DEFINITION 3. We say that M = {fLi}¥:1 generates an Hermite-Birkhoff
(HB) interpolation problem if to each J1-i E M there corresponds a pair (Xi ,j;)
such that fLd= D i 1(Xi), where a < Xi < band 0 <ji < n - 1. Iffor each
fLi EM,

"-1

fLd = L OI.iiD1j(X;),
j=O
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where the {Xij are real and the vectors L\:; = (cx;,o ,... , L\:;,n-Il defining functionals
associated with the same point are linearly independent, then we say thaI
M generates an Extended Hermite-Birkhoff (EBB) interpolation problem.

We remark that an (HB) problem is a special case of an (EBB) problem,
Moreover, by definition, the linear functionals defining an (EBB) problem
are linearly independent, and, as a consequence of (1.9), continuous over H.

Let M generate a A-poised (EHB) interpolation problem. We wish to
state and prove a theorem characterizing Sp(A, M). The point x E fa, bJ is
said to be a knot of S E Sp(A, M) if

12-1

iLl = I L\:iD1(x)
i~l

is in At for some choice of {L\:i}~~:::r

We first show that s satisfies As(x) - 0 in the intervals between the knots
a :(; Xl < X2 < ... < Xk :(; b of s. Let g E C/'(Xi ,Xi+1)' Since A! generates
an (EHB) problem, then g E V(O). Hence, from (1.20), after integration by
parts

o = B(s, g) = r"'i+1 sex) . Ag(x) dx.
.... Xi

(2.1)

Since an(x) > 0 for x E (a, b) it then follows from well-known arguments (6)

that As = 0 on (Xi, Xi+1)'

Let x E (a, b), s E Sp(A, M) and g E V(O) n Cc'G(x - E, X + E). Then from
(1.20), we have that

Defining

n-z"-l

DiS I (_1)i+1 Dj[aJ+i~lDi+i~ls],
j=O

then, upon integration by parts we have that

n-l

o = L Dig(X) [DiS]" ,
;=0

(2.3)

(2.4)

where [n", == f(x+) - f(x-). The same relation holds at x = a or x = b,
with [f]a = f(a+) and [fh -f(b-) provided the appropriate limits
exist.
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Let ex = (exij)~-J,"-I, I ~ n be of rank I and let eX be an n X n nonsingular
matrix obtained 'by augmenting ex. Let 7] - (7]ii) be the inverse of the adjoint
of eX. Then we have the following easy lemma [cf. 7].

LEMMA. Let

n-l d j

M i = L eXij (dx )
J=O

Then

n-l

and Ri = L 7]ijOj,
;=0

O~i~n-1.

n-l n-l

L Dig(X)[OiS]x = L Mig(x)[Ris]x ,
i=O i=O

(2.5)

for all g E Hand S E Sp(A, M).

Suppose x E [a, b] is a knot of s. Then there are lex), 1 ~ lex) ~ n, linear
functionals in M of the form

n-l

MiX)s = L exi/X) DiS(X),
;=0

°~ i ~ lex) - 1, (2.6)

where the {ex(x) = (exi,O(X), ... , ex'·."_I(X)}~("')-1 are linearly independent. We
denote as [R~")s]x the quantity satisfying (2.5) with the M i as in (2.6).

We now state and prove a characterization theorem for A-splines.

THEOREM 4. Let M = {!-ti}7'=1 generate a A-poised (EHB) interpolation
problem. Let s E Sp(A, M) interpolate (1'1 ,..., rmY with respect to M. Then

(i) As(x) = 0,

(ii) !-tiS = ri ,

(iii) [R1")s]x = 0,

(iv) [OiS]a = 0,

(v) [Oish = 0,

if x is not a knot,

1 ~ i ~ m,
lex) ~ i ~ n - 1, if x is a knot, (2.7)

°~ i ~ n - 1 if a is not a knot,

°~ i ~ n - 1 if b is not a knot,

provided the limits in (iv) and (v) exist and, if x = a or b, the limits in (iii).
Conversely, if s E H satisfies (2.7), then s is a A-spline interpolating (EHB)
data (1'1 ,... , rmY, provided (1.20) implies (1.12) has a solution.

Proof (2.7 (i), (ii)) have already been proven. (2.7 (iv), (v)) fol
low directly from (2.4). To prove (2.7 (iii)), assume x E (a, b), and fix
j, lex) ~ j ~ n - 1. Choose e > °such that x is the only possible knot in
(x - e, x + e). There exists a function g E Cc'"'(x - e, x + e) satisfying
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(g(x), ... , gn-1(X)Y = (&)-lIj , where I j is the j-th column of the 11 X 11 unit
matrix. Thus, by construction, Mji) g(x) = Ojj, 0 ~ i ~ 11 - 1, and
g E U(O). The result of (2.7) then follows from (2.4) and (2.5). The cases
when a and/or b are knots are handled similarly.

The converse follows from the fact that (2.7) implies that the orthogonality
relation of (1.20) is satisfied.

Since S E en-I[a. b], we have for, x E [a, b]

where ~ is a lower triangular matrix with ±a,,(x) on the diagonal. Since
([R~"')s]Q' ,... , [R~~lS]"y = 'I]([Oos]", ,..., [On-1S]"Y, then the equations (2.7 (iii)
represent n - I(x) linearly independent relations among the {[sJ"],,};:'-l at
the point x (except at x = a or x = b).

COROLLARY 3. If s is a A-spline corresponding to an (HB) interpolation
problem, and the I-th derivative (0 ~ I ~ n - 1) evaluated at the knot x is
not invoked in the (HB) data, then [Ots]", = 0, where the limit is assumed to
exist ifx = a or b.

COROLLARY 4. Let s be a A-spline corresponding to an (HB) interpolation
problem, and suppose v denotes the order of the highest derivative spectfied
at a knot x E (a, b). Then [Djs]", = 0 for 0 ~j ~ 2n - 2 - v.

In the special case A = (-I)"D2n, we have the following.

COROLLARY 5. Let s be a A-spline with A = (-I)"D2n, interpolating (HB)
data; and suppose the I-th derivative 0 ~ I ~ 11 .- I) is not specified at a knot x.
Then [D2n-I-1s]", = O.

3. ERROR ESTIMATES

In this section we shall obtain error estimates for the approximation of
smooth functions by A-splines. We first make some definitions.

DEFINITION 4. IE Sp(A, M) is called an Sp{A, A-'1)-interpolate of f E H
if fLj = fLf, for all fL E M.

DEFINITION 5. Let lvl generate an (EHB) interpolation problem, and
{Xj} be the corresponding knots. The subset Ll consisting of all x E {Xj} such
that there exists fL E M satisfying fLf = f(x) is called the partition of [a, b}
induced by M. If L1 is not empty, define 2f as the maximum length of the
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subintervals into which [a, b] is decomposed by the points of LI, and 4 as
the minimum such length. If x E LI, let i(x) be defined as the maximum
positive integer such that there exists fJ'k E M for which fJ'.,j = Dkf(x) for
each 0 :os;; k :os;; i(x) - 1, and define y(LI) by

y(LI) = L i(x).
XELI

THEOREM 5. Let fEH, let M generate a A-poised (ERR) interpolation
problem, and assume y(LI) ;;;: 11. If s is an Sp(A, M)-interpolate of f, then
B(f - s,f - s) is nonnegative for Lf sufficiently small and there exist positive
constants Cj , 0 :os;; j :os;; n - 1, independent off and LI, such that

II Di(f - s)IIL"'[a,b] :os;; Cj [WI (_1_), nLft2 . (Lf)n-j-l [B(f - s,f - S)]1/2.
an (3.1)

In addition, if the hypotheses of Theorem 3 are satisfied for the jo of (1.7) then

_ [ (1 _)]1/2 - .II DJ(f - s)IIL"'[a,bl :os;; Cj WI an' nLi (LI)n-J
-
1 1Ifllv ,

for Lf(io) sufficiently small, where

wl(g,8) == sup IfxH
Ig(t)\ dt I.

x,x+tE[r."l x I
oqtl,,;;a

O:OS;;j:OS;;l1-l,

Proof Let LI = {go < gl < ... < gN}, and s be any Sp(A, M) interpolate
of f (s is not necessarily unique.) Since f - s E Cn- 1[a, b], and y(LI) ;;;: n,
we can apply a generalized Rolle's theorem, i.e., setting g~O) = gi ,0 :os;; i :os;; N,
there exist points LI (j) = {giil}!i; in [a, b] such that

o :os;; j :os;; n - I, (3.2)

where N = No ;;;: N 1 ;;;: ... ;;;: N n- 1 ;;;: 0, where the points of Llli) satisfy

a s:: gUl < gli) < ... < gUl s:: b
....." 0 1 N; ....."

and

Cli) s:: Cli+l) < C(i)
Sl ....." ~l SI+1 for all O:OS;; I :os;; Ni and O:OS;; j :os;; n - 2.

It follows immediately that I gi~1 - gij) I :os;; (j + 1)Lf, Ia - g~j) I :os;; (j +1)Lf,
and I b - g~: I :os;; (j + I)Lf for any 0 ~j :os;; n - 1. For each such j, let
Xi_E [a, b] be such that

I Di(f(xj) - s(Xj» I = II Dj(f - s)IIL'" , O:OS;;j:OS;;n-l. (3.3)
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Since L/Ul = maxil gi~1 - g:iI I ~ (j + 1)3, there is a point giil such that
I Xi - ekiJ I ~ (j + 1)3. From (3.2) and (3.3), therefore,

il DiU - S)!!L'" = IJ:~;; Di+1(f(t) - set»~ dt I'
For 0 ~ j ~ n - 2, then

O~j~n-L (3.4)

il Di(f - s)IIL'" ~ (j + 1) 3[: Di-f-1(f - s)IIL"',

and we have that

i,l Di(f - s)ilL'" ~ (n (})!I)! (3)n-i-1 11 Dn-1(j - S)!!L"',

From (3.4) and the Schwarz inequality,

II Dn-1(f - s)1I1", = ,'f"'n-I
Dn(f(t) - set»~ dt 1

2

<In-I)>.

o~j ~ n - 2,
(3.5)

'" . 1 •~ [f n-I I. ;= . Van(t) Dn[f(t) - S(t)]1 dtJ-
"g~~-I) V an( t)

Therefore,

But, from (UO) and (1.11), there exists a positive constant K such that

.obJ an(t)(Dn(f(t» - S(t»]2 dt
a

~ KII! - s 111 = K[B(f - s,j - s) + ell! - s 11;0.2]' (3.7)

Since

Ii DIi'(f - s)lli. ~ (b - a)ll Dk(f - s)lIi", 0 ~ k ~ n - 1,
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we have from (3.5)-(3.7) that

ranCt)[Dn[f(t) - S(t)]]2 dt
a

io ( 1)' 2
~ KB(J - s,f - s) + KC(b - a) ~o [ n;! . (LJ)n-k-I]

1 b

X WI en ,113) .Lan(t)[Dn[J - S]]2 dt

For 3 sufficiently small, the coefficient of the second term on the right-hand
side can be made less than 1/2 for any jo ~ n - 1 (since 11an ED). Thus

ran(t)[Dn(J(t) - S(t))]2 dt :(: 2KB(J - s,f - s) (3.8)
o.

for all 3 sufficiently small. Equations (3.5), (3.6) and (3.8) then give

II Di(J - s)IIL'"

:(: V2K (n )! I)! (3)',-i-I [WI en ,n3)(2 [B(J - s,! - S)]I/2

o :(:j ~ 11 - 1 (3.9)

for all 3 sufficiently small.
To prove the second inequality in (3.1) we recall from the proof of

Theorem 3 that, if 3(0) is sufficiently small, then the norm

Ilfll~ = B(J,J) + L U-t(J)]2,
/LEU

for all fE H, (3.10)

is a norm on H equivalent to the norm, II 'IID . Thus, since,

B(f - s,f - s) = Ilf - s II~ = lifilil - II s II~ :(: Ilfllil ~ Kllfl11 (3.11)

the second inequality follows from the first. This completes the proof of the
theorem. We now obtain L2-norm error estimates.

THEOREM 6. Let f E H, and let M generate a A-poised (EHB) interpolation
problem. We assume that yeLl) ;;:, n. Ifs E Sp(A, M) interpolates f, then, for 3
sufficiently small, there exist positive constants c~1), 0 ~ j ~ n - 1, independent
offand Ll, such that

\I Di(J - s)IIL2 :(: C~l) [WI en ,n2f)f2
(2f)n-H/2[B(f - s,f - S)]I/2. (3.12)
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In addition, if the hypotheses of Theorem 3 are satisfiedfor thejo of(1.7) then

O~j~n-l,

for L1uo) sufficiently small and

br an(x)[Dn(f - S)(X)]2 dx ~ c~;)B(f - s,f - s) ~ c~l) lifll~ . (3.12')
• a

Proof For any 0 ~j ~ n - 1, we have from (3.2) that Di(f - s)
vanishes at ~P) for 0 ~ 1~ N j • Applying the Rayleigh-Ritz inequality
we have that

o ~ j ~ 11 - 2, (3.13)

since ~Wl - ~F) ~ (j + I)Lf. Summing both sides with respect to I, we have
that

o~j ~ n - 2.
(3.14)

For j = n - 1, we cannot use the Rayleigh-Ritz inequality, since Dn(J - s)
is not necessarily in V. However,

I, Dn-l(f )112
: - S L2[a.b]

For each x in the subinterval [g~n-l), gl:~ll)],

Dn-1U - S)(X) = I'" Dn(f - s)(t) dt
~(n-l;

k

I'" 1 /-= ~ " G,,(t) D"(f - s)(t) dt.
~(n-l) • / G (t)

k V n
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and, integrating, we get that

11Dn-l(f )j12I - S L2[</"-1) ,/0-1)]
'k • 'k+l

for each 0 :::;; k :::;; N n- 1 - 1. However, for each 0 :::;;j :::;; n - 1,

g/i)f 0 [Di(f - S)(t)]2 dt :::;; I g~i) - a III Di(f - s)lIf", ,
a

and using the fact that I t~j) - a I :::;; (j + 1)3, as well as (3.5) and (3.6),

.(J)f 0 [Di(f - s)(t)J2 dt
a

- (1 _)fb:::;; c;(Ll)2n-2i-1w1 an' nLl a un(t)[Dn[j - sl(t)J2 dt,

with the similar inequality

Jb. [Di(f - S)(t)]2 dt
g/l)
N;

- ( 1 -) fO:::;; C;(Ll)2"-2J-lWl a' nLJ an(t) [Dn [f - s](t)J2 dt.
n a

From (3.15)-(3.18), we then have that

(3.17)

(3.18)

(3.19)

and using (3.8) and (3.11) the result of (3.12) follows for j = n - 1. The
inequality (3.12) for 0 :::;;j:::;; n - 2 follows by induction using (3.14), (3.17)
and (3.18). The result of (3.12') follows directly from (3.8) and (3.11).

Suppose M generates a A-poised (EHB) interpolation problem. Let f be
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such that AfE D[a, b] (and alsofE H), and let s be an Sp(A. M)-interpolate
of j: Then, from Theorem 4, we have, upon integration by parts, that

B(f - s,f - s) = r (f - s)(x) . A/(x) dx + Cf Di(f - s) Di(f - sJr
a i=O J a+

(3.20)

whenever the limits [O;(f - s)J~+ exist, 0 <: i <: n - 1, and

M -:J {fLi : fl4 = Di/(a),

U {fLi : fLif- Dij(b),

O<:j<:n-l}

o <:j <: n - I}.

Then (3.20) becomes

B(f - s,f - s) = r (f - s)(x) . A/(x) dx, (3.21)
a

which is known in the literature as the second integral relation. Higher order
error estimates for spline interpolation in general require the assumption of
the second integral relation.

THEOREM 7. Let fE H, AfE D, and let 1v1 generate a A-poised (EHB)
interpolation problem. We assume that yeLl) ?: n, and that the second integral
relation of(3.21) is satisfied./fs E Sp(A, M) interpolates/, thenfor.3 sufficiently
small, there exist positive constants C;2l, independent off and LJ, such that

II Di(f ~ s )iIL"" <: cj'2)(3j2n-i-3/2 [WI C'n.3)] Ii AfilL' ,
n

Proof From (3.21) and the Schwarz inequality,

B(f - s,f - s) <: Ilf - s [IL·11 A/IlL" .

But, from (3.12),

O<:j<:n-l.

(3.22)

[ (
1 _)]1/2

B(f - s,f - S) <: C~ll WI an' nLl

Thus,

(.3)n-l/2[B(f - s,f - 5)]1/211 .!If!iI.~ .

[B(f - s,f - S)Jl/2 <: C~I) [WI en' n.3)t
2

(21)"-1/211 A/IlL"' (3.23)

Using this in (3.1) then gives the result of (3.22).

THEOREM 8. Let /, M, s, and Ll satisfy the hypotheses of Theorem 7
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Then,for .3 sufficiently small, there exist positive constants c?), 0 :( j ,;;;; n - I
independent offand L1, such that

II DiU - s)IIL2 :( C?l(.2I)2n-i-I [WI C,n.3)]\1 ilfllL2 ,

n
0:(j:(n-1,

and if the hypotheses of Theorem 3 are satisfied for the jo of (1.7) then

(3.24)

for .3(io) sufficiently small where II . 11M is as defined in Theorem 3.

Proof Follows Directly from (3.23), (3.12) and (1.27).

Remarks. (I) We wish to discuss briefly how the present paper extends
the concept of Lg-spline as contained in [7] and [8]. There, il was the differ
ential operator L*L, and an(x) ~ ex > 0 for all x E fa, b].

First, we point out that for any il, satisfying (1.1) and (1.2), and any
bilinear form B, satisfying (1.6) and the property that il is the associated
Euler operator, the entire theory that we have developed for the special
choice of B in (1.3) carries over, with obvious modifications in the definition
of the operators Oi in (2.3). In particular, if il is of the form L*L then the
bilinear form

B'(u, u) = r[LU(X)]2 dx
a

clearly has il as its Euler operator and, in addition, may readily be shown to
satisfy (1.6) with B' in place of B. Here, it is not necessary, even, that L be
nonsingular. We require only that L*L satisfy (1.1) and (1.2). Now, since
the form B' is obviously nonnegative, Theorem 1 implies the existence of
the spline in this case. If, in addition, L is nonsingular, the condition for
uniqueness of the spline in Theorem 1 reduces to the familar condition

NL n U(O) = (0),

where NL is the null space of L. This follows easily from the readily veri
fiable fact that (1.18) is equivalent, in this case, to

(L*L + CI) ep = Aep

DiLep(a) = DiLep(b) = 0, o ';;;;j :( n - 1,
(3.25)

which implies that C is an eigenvalue of (3.25) with corresponding eigenspace
precisely NL •
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It is, of course, essential that forms more general than (1.3) be considered.
In particular, if A = -D2 + 1, then A = L*L, with L = D + 1, and

B'(u, u) = r[Lu(x)]2 dx
a

= s: [DU(X)]2 dx + 2 ( u(x) Du(x) dx + J: [U(X)]2 dx.

On the other hand, the form B, defined by (1.3), yields in this case,

.b Jb
B(u, u) = J [DU(X)]2 dx + [u(x)]2 dx

a a

which is also nonnegative. The functions minimizing the functionals Band B'
are not, in general, the same of course.

The y-elliptic splines of Schultz [11] are readily attainable by our methods.
There it was assumed that A was nonsingular and coercive over the class H o
of functions in H whose derivatives through order n - I at a and b vanished,
i.e., B defined a norm equivalent to the Sobolev norm on Ho; splines satis
fying Hermite data were then defined, locally annihilated by 11, where
derivatives through order n - 1 were specified at a and b. Our own arguments
show that such splines can be obtained, since in this case B is nonnegative,
over H o; we simply minimize B over Ho , subject to the Hermite constraints
corresponding to interior mesh points, with data decreased by the values
Djrp(Xi)' where rp is the unique member of the null space of A satisfying
the 2n endpoint conditions. S = 1I + rp, where u solves the minimization
problem, is the y-elliptic spline.

(2) We shall now include an example to illuminate the previous theory.
For simplicity, we choose points °< Xl < ... < X m < 1 and 0 < a < L
We consider the minimization problem

, 1

min lLx"[D"u(x)]2 dx : u(Xj) = r J , (3.26)

in the space H = {li : f~ x"[Dnu(x)]2dx = B(lI, u) < co}. B(u, u) is evidently
nonnegative and by Theorem I a solution s exists which is unique if In ?-- n.
Furthermore, s E C2n- 2[O, 1] n C2n«o, x) U (Xl' X2) ... U (Xm , 1) and satisfies,
on each of the subintervals (0, Xl), (Xl' X 2), ... (Xm ,1), the differential
equation

(-l)nDn(xGDns(x» = o.
This implies that s is of the form

(3.27)
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where Pn- 1 is a polynomial of degree n - 1, on each of the subintervals.
Moreover, on (0, xJ and (x"" 1), s actually reduces to a polynomial of
degree n - 1, Le., the coefficients (xo , ••• , (Xn-l are zero for these intervals.
This is not the case, however, if certain derivatives of order j, °~ j ~ n - 1,
are specified at 0 and 1. In this latter case, one can say that, if the j-th deriva
tive is not specified at 0(1), then Dn-H(x"D"s)(x) approaches zero as x tends
to 0(1). In particular, this implies that (Xj = 0 in the representation on (0, Xl)'

(3) If the linear equality constraints of Theorem 7 are exclusively
of full Hermite type, i.e., derivatives of order through n - 1 are specified
at each knot, then the exponent of .2f in (3.22) can be improved by one-half
unity (see, e.g., Dailey [3]) provided ilfis bounded.
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