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INTRODUCTION

The subject of spline functions has developed extremely rapidly during
the last ten to fifteen years and, perhaps, the major reason for this is the dual
nature of the spline. On the one hand, it has been historically characterized
as a real-valued function with global smoothness properties pieced together
locally by null solutions of certain differential operators. On the other hand,
it can frequently be characterized as the solution of a minimization problem
subject to certain linear constraints, The approach taken in this paper is the
variational approach and the functional B(u, ) which is minimized is the
bilinear form associated with an arbitrary self-adjoint operator / which is
permitted to be singular, provided the leading coefficient has an integrable
reciprocal and vanishes only at the endpoinis.

This paper then unifies and extends certain concepts in Lucas [9] where
nonsingular self-adjoint operators are comsidered, in Ciarlet, Natterer and
Varga [2] where Hermite splines associated with singular self-adjoint operators
are considered, and in Dailey [3] which is an extension of [2]. Moreover, it
contains as special cases most of the notions of spline functions previously
defined by means of nonnegative bilinear forms B(u, u), associated with
certain nonsingular self-adjoint ordinary differential operators, with linear
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16 JEROME AND PIERCE

equality constraints (cf. [7, 8]). In particular, it is shown in this paper that
a spline function may be obtained whenever B(u, u) is nonnegative over
a suitable function space for the broad class of singular self-adjoint operators
considered here.

The paper is divided into three sections, the first of which treats the general
problem of existence. Here it is shown that a solution of the minimization
problem need not exist {Theorem 2) in all cases. A sufficient condition for
existence in terms of the eigenfunctions of an operator which is a natural
translate of A is given in Theorem 1 and from this follows the existence
result in the case when B(u, u) is nonnegative. Theorem 3 concludes this
section by showing that existence of the spline always holds if, included
among the linear equality constraints, are sufficiently many-point evaluations,
or derivative evaluations. Thus, Theorem 3 provides a practical existence
criterion to supplement the abstract criterion of Theorem 1.

Section 2 of the paper provides an analytical characterization of the spline,
illustrating the previously mentioned duality, in the case where the linear
equality constraints are so-called extended Hermite-Birkhoff functionals.
The principal result is described in Theorem 4 which extends corresponding
concepts in {7}

Section 3 of the paper deals with error estimates, or, more preciscly, the
order of approximation of the splines to smooth functions whose higher
order derivatives are square integrable with respect to a weight determined
by the leading coefficient of /. These results reduce, in the nonsingular case,
to those of [8] and comprise the content of Theorems 5-8. These convergence
resuls are especially useful in the use of Galerkin subspaces to approximate
solutions of two-point boundary value problems.

I. EXISTENCE

Let A be the formally self-adjoint 2n-th order differential operator

(1.1)

li

)

A= i (—1Y Dilalx) D], D

where we assume that
) 2,(x) > 0forall xe(q, b),
(i) 1/a, € La, b], (1.2)
(iii) a; € C'[a, b], 0<<j<nm, a, € C(a, b).

Let H denote the linear space of all real-valued functions f, defined on
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fa, b}, such that DY is absolutely continuocus, and va, D% ¢ L2a, bl
Define the bilinear form B(u, v) as follows:
L
Blu,v) =Y J a{x) Du(x) D'e(x)dx, forall w,veH. (1.3)

j=0 v a

Ii follows easily that B(u, v) is defined for all », v € H, and moreover, that
there exists a constant C’, possibly negative, such that

b
B, u) — j a()D ()P dx = C'|[ul? ;, forall weH, (1.4

where |} - {l,_1.» is the usual Sobolev # — 1, 2 norm, defined from

(t, 0); 5 = j (Z Dtu(x) Drv x)) (1.5)

& Pl

e

We now show that there exist positive constants « and C such that

-1

Bl u)+ Clul’_,, >« [[ oK) [Du(x) ] dx -+ }_j Df;;fa)}z]

forallue H. (1.6

From the identity

peute) = (g2 )= [ ([ pratorae) ax + [ prsut ax),

it follows from the Schwarz inequality and (1.2ii} that

! Dn——lg(a)lz
S rr a) (10w iz, + 6 — )] E‘ ?’-%;)- dx] [ 4, () DCP: di)
< a) (i ulll 1.+ K j a, (D u(x)P d‘c)

From Sobolev’s inequality [1, p. 321, there exists a positive constant ¥ such
that

n—2

viulh s 2 [Du(@)P.

The result of (1.6) then follows from (1.4) and the above two inequalities.
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We will now show that the following inequality is satisfied.
b n—1
B w) + Clulls > o[ a@DuxPdx + Y, Du@P], (1.7
a i=0

for all ue H, for all 0 <j, <n— 1, where a and C = C; are positive
constants. Indeed, (1.7) for j, = 0 (which implies (1.7) for j, = 0) follows
from (1.6) and [12, Theorem 1] the inequality, valid for 0 << e <1, and
0<j<m

ul, < ple 4 vVa, D}, + <7 | ul},), ue Hla,bl}

for some positive constant . Since the constant C of (1.7) may be expected
to decrease with increasing j, , we retain the flexibility of (possibly) choosing
Jo > 0 in what follows.

We now define an inner product on the space H as follows.

(ll, U)D = B(us U) + C(u= U)J’g,2 5 (18)

with j, and C as in (1.7). To show that H is a Hilbert space under (-, -)p,
we first show that there exist positive constants K; , 0 <{j < n — 1, such that

Null, = K; | Dulpe, 0<j<n—1, forall ueH. (1.9)
From (1.7) it is clear that

n—1

lulh >« fb a (NP u(x)F dx + o Y. [D'u@F  forall ueH. (1.10)
a j=0

Since D*-1f is absolutely continuous,

Drif(t) = [ DY) dx + D™1f(@), and therefore

e <2 [[[ D@ x| + - @F].
However,

1 (Y DR 2
) Va, () D f(x). dx|

] et o ax

ECYEI)

a

<la

— k| (D" (P dx,

1 A version of this inequality has been obtained independently by M. Silverstein
(unpublished).
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where we have used Cauchy-Schwarz and {1.2i)-{1.21i). Thus, from {1.10)
| D)

B a1
<2[& [ a@IpoPdy+ 3 DF@F] < 2 max(®, vl

Since this holds for all ¢ € [g, b}, we have proven (1.9) for j =# ~ 1. The
inequalities for 0 <{j <<n — 2 follow similarly. From {1.9) and (1.10) it is
clear that H is a Hilbert space under|| - ||, , since convergence in || - |5 implies
L* convergence in all derivatives to order n -~ 1, and convergence of the
n-th derivative in the weighted L%norm. Finally, from (1.9}, it then follows
that there exist positive constants K, 0 <{j << n — 1, such that

[uld > K |ul®y forall ueH, O0<j<n—1. (LID

Let M = {u;}7:; be any set of bounded linear functionals, linearly indepen-
dent and continuous over H, and 7 & E™ an m-vector of real numbers. We
then make the following definition.

Derinirion 1. se H is called a A-spline, interpolating 7 with respect to
M = {p;}T2, , if 5 solves the following minimization problem:

B(s,s) = }g(r}) B(u, u), (L1
where

Uy ={ucH: pu =r;, 1 <j<m}

We remark that, as a consequence of (1.9), point evaluations of a function
and its derivatives up to order n — 1 are continuous linear functionals over
the space H. We shall be initially concerned with proving the existence of
Z-splines. In order to do so in the most general manner, we shall require
some technical resulits.

By definition, the space H is contained in W#2%[qg, p], foreach 0 <j <{n- L
We now show that the injection of H into W¥2[g, b] is compact for each
0 <{j<<n— 1. Suppose {u.)m_, is a sequence in H such that [u,ll; <c
for all m >= 1. We must show there is a subsequence {tm, 7.1 cONVergent in
Wi-2la, b]. From (1.9), there exists a constant ¢’ such t‘lat {Il Dt |10k < &,
for all m > 1, 0 <j << n — 1. Thus, the sequence {D" 4, }>_, is uniform}y
bounded.
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Moreover,

i D n‘lum( y) —D n—lum(x}E‘Z

JJ D () dt i2
<[/

N |
<|.am

]

—— \/ a,(t) Du,(t)

\/ |

dt - j " O (O] dr]

which, from (1.10), becomes

| Dr—1y (},) — Dry (\7)12 < f’i fy_Ldg

H my) (i ANS ~ Y " an({)
Since 1/a, € L[a, b], it follows that [;[1/a,(t)] dt is less than e whenever
| x — y | < 8(e, ay), and hence the family {D*'u,,}%_; is also equicontinuous.
Therefore, there exists a subsequence {D" 1y, };41_1 which is convergent
in L=, and hence in L2 Now consider the sﬁbsequence «[}D”"%e,,%l}xk1=1 .
Again this is a uniformly bounded, equicontinuous sequence, and we can
extract a subsequence convergent in L2 Continuing this process, we obtain
a subsequence of the {u,},., which is convergent in W72[q, b} for all
0 <{j < n — 1. Thus, in particular, for j, as in (1.7)

I:H— W%  iscompact, (1.13)
where [ is the injection mapping of H into W2,

With j, as in (1.7), it follows from (1.11) that

(w,)p = Kllulj,, foral uecH, (1.14)

for some constant K > 0. Thus, from the Friedrichs extension theorem
[10, p. 335], there exists a self-adjoint positive definite transformation

onto

A:%,CH > W% such that

(4, v)p = (du, v);,.2 forall ue2,,veH. (1.15)

The domain @, of 4 is a linear subspace, dense in H. Moreover, 4! exists
and is a self-adjoint operator from W2 @, and, from (1.13), is compact
when viewed as a transformation from W2 — W2, Thus 4 has a discrete
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spectrum {A;}7_; such that A; — oo as j— o, and the eigenfunctions {¢;}7;
of 4 are orthonormal and complete in W72, Moreover, since

(s 5 Pi)p = (Ag:, ‘Pj)ju,z = /\z(% s %)jo,z = A8,
the {@;}7- are orthogonal in A with respect to (v, -} . The set {g;;%, is also
complete in H, since if (¢; , w)p = O forall j, then (@, , w)p = (A, W) 2 =

/JO,L.
Ad@i s W)j,,2 = 0. Since A; 5% 0 for all 4, then w = 0.
Since A may not be defined on all of A, we want to show that

(u, v)p = (AY?u, AY?);,0 , forall u,veH. {1.16}

Consider the transformation AY2: Z ;52— W2 Since A4 is self-adjoint,
50 is AY2 on D e = {u € Wikt 3, M(u, @) » < 00} D &, . But since

; ; 2
HIES Z E’—{QR @; forall uweH, with Z Lu’—;l)—”— < <o,
7 4

7

it follows from the relation (u, ¢5)p/A; = (4, ®;); o that A*/* has domain
containing H. It then follows that

(u, v)p = (AY?u, AY%); forall w,reH.

Now define the operator .# by

4
Mu =Y (=1 D%  for ueHn C¥(a,b) (117

<=0
Then from the relation
(¢, )p = Blp, u) + Clop, u);,.»

we have, for each u € C,*(a, b) and each eigenfanction ¢ of A corresponding
to eigenvalue A,

B(QD: LI) + C((Pﬂ ”).7'0 - )\(99’ ll)jrt = G’

(¢, Adu + Cliu — Abluyg, = 0

which shows [6, Sec. 8] that A is an eigenvalue and ¢ a C**{a, b) eigen-
function of

A+ Ct)p = Allp, @D, Ca,b). (1.18)

640/5/1-4



22 JEROME AND PIERCE

(1.18) thus has a discrete positive spectrum and a complete orthogonal
system of eigenfunctions in H and W72, which coincide with the spectrum
and eigenfunctions of A4.

We are now prepared to state a basic theorem concerning the existence

of A-splines.

THEOREM 1. Let M = {u;}7, be any set of linear functionals, linearly
independent and continuous over H. If there exist eigenvalues 0 <Ay <C *-
KAy <C and A, =--=2d_,=0C of (1.18), with C as in (1.7), let
Q1 5e-n Pry be the corresponding eigenfunctions. Then the minimization
problem (1.12) has a solution for all 7€ E™ if U(Q) is orthogonal in H to
{@1 »e» Pr_1}. In this case the solution is unique if and only if UQ) N span
Py 5eees @1y = {0}. In particular, if B(u, u) = 0 for all u € H, then a solution
of (1.12) always exists. If j, = 0 then .# = I in (1.18).

Proof. The subspace U(D) is closed in H and of finite co-dimension.
For a given ¥ € E™, choose any element f, of U(¥) (such an f, exists because
of the linear independence of the {u;}}-,) and hold it fixed. The hyperplane

{fo — u: ue U(D)} is also closed, and of finite co-dimension. Solving (1.12)
is equivalent to solving the following problem

B(s,s) = min B(f, — u,f, — u). (1.19)
ucU(0)

Write the orthogonal decomposition of f; and u € U(D):

Ho=ht+t1+fs where f; , u; € span {@y ,u.., Pry)
U= U+ Uy + Uy Ja» Uy €5paAN @y 5eue, Py
Ja, usespan {g; ,...).

Then u, = 0 by our assumption on M, and therefore
B(fo— u,fo—w) = | fo —ulp — Clifo — ulle
= AP = ClAL.
+lfe—uwlh— Clife — tallfye
+ 1S5 — s[5 — Cllfa — s |2 -

But the terms on the first line of the decomposition are constant, and the term
on the second line is zero. Thus, to show (1.19) has a solution, we need merely
show that there exists a minimum of the quantity

M fa—us “:i) —Clfs—u ”]2'0,2
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over the set U;(0) = {us: there exists u, = ZE a;; such that u, + uy € U0
Let

-1
Ho=\fif=g—3 &80 o genl
i=1 z

be the orthogonal complement of {gy ,..., @;_;> in H. Let P, be the projection
of H onto H, , i.e.,

Pof = f— z (f’ (Pl)D @; forall feH.

Then P,U(0) = U3(ﬁ) and since the null space of P; is a finite dimensional
space it follows [4, Lemma 2.1] that U,(0) is closed and convex. More-
over H, is also a Hilbert space under the norm | -], defined from
-7 =1-1%— C|-I 2. For, A, > C and

1£15 = (AY2f, A%F)ie = Al fi.  forall feH,.

Therefore,
C o . C o 42
L1 = CUflie = (1= 5 Jif 1 & 5 17T — 1L
CVire —
>(1— )i =Clsip  forall feH,.
A
where C, is a positive constant. It is immediate, moreover, that

iflls =1 /15— Clfl3,. forall feH,.

Thus the norms || -||p and || - |l; are equivalent on H;. Therefore, the set
/3 — Ux(0) is a closed and convex subset of H, under the norm ! - ||, and
the quantity

Ifs — u3Ht =Ifs— “3“1) Cllfz —uy H;T),,.z

possesses a unique minimum over Uy(0), as was to be shown. Thus (1.12) has a
solution s for any 7 € E™. If s’ is any solution of (1.12), it follows from the
above arguments that s—s' €span {g,,..., p;_;>. Moreover, u{s—-s) =20
for all pe M, and hence 5 — s' € U(0) n span {@, ,..., p;—1>- The spline s
is therefore unique if U(0) N span {@q ,..., g;_yy == {0}. Conversely, if
ue UD) N span {g, ,..., p;_1>, then s + u also satisfies (1.12). Hence, if s iz
unique, v = 0 and U(0) N span {g, ,..., p;_1} = {0k



24 JEROME AND PIERCE

If B(u, u) = O then clearly
B(u,u) + Cllulf,e = Cllulf,,.

Hence all the eigenvalues of the operator A are greater than or equal to C
and a solution of (1.12) always exists.
Finally, the last statement of the theorem follows from earlier remarks.

CoROLLARY 1. If's € U(¥) is a solution of (1.12), then
B(s,l) =0  for all he U(@). (1.20)

Conversely, if (1.20) holds and UQ)* D {gy ,..., P,_1}, then s solves (1.12).

Proof. 1If B(s, h) = 0 for all h € U(D), let 5, be any other element of U(F).
Then, using only the bi-linearity and symmetry of B(u, v),

B(sy , 51) = B(s, s1) + B(s; — 5, 59)
= B(s, s) + 2B(s, sy — 8) + B(s; — 8,8 — $).

But, since s, — s € U(0), then B(s, s; — 5) = 0, and by the assumption that
U@©)* D {py youer @r_1}, B(sy — 5,5, — 5) = 0. Hence B(s; , sy = B(s, s) and
s solves (1.12).

Let s be any -spline interpolating 7 with respect to M. Let ke U(D).
Then, since s + eh e U(F) for any e,

B(s + eh, s + €h) = B(s, s) + 2¢B(s, h) 4 ¢2B(h, h) = B(s, s) for any «.

Hence
2eB(s, h) + 2B(h, h) = 0. {1.21)

There are three cases, depending upon the sign of B(A, h).
(a) If B(h, h) = 0, then (1.21) = B(s, k) = 0;
(b) If B(h, ) <0, choose

_ B(s, h) | 3B(s, h)?

€ = B R then (1.21) = B ) =0
and hence B(s, h) = 0;
(c) If B(h, ) > 0, choose
___ B(s,h) _ [B(s, P
€ = ODE then (1.21) = "B =0

and again B(s, &) = 0.
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As a partial converse of Theorem 1, we prove

THEOREM 2. If U(0) N span {@y ,..., @, = {0}, where {@; .., @rq}
are the eigenfunctions described in Theorem 1, then no solution of {1.12)
exists for any i € E™,

Proof. Suppose U(D) N span {gy ,..., p,1> 2 {p} and suppose u e U(F)
solves (1.12). Then for any constant k, u + ko € U(F), and

B+ ko, u + ko) = B(u, u) + 2kB(u, ¢) + k*B(p, ¢).

But B(p, ¢) = || ¢ |3 — Cll @ |2 5 < 0. There are three cases to examine.

Jor2
(a) If B(u, p) = Othen B(u + k¢, u +- ko) < B(u, u) for any & £ 0;
(b) If B(u, ¢) < O take & > 0; then B{u + ko, u + ko) < By, u);
(c) If B(u, @) > 0take & << 0; then By + ko, u + ko) < By, u).

Thus we arrive at a contradiction.

DeriNiTiON 2. Given a differential operator A satisfying (1.2), and a
set M of linear functionals, linearly independent and continuous over .,
we say that M generates a A-poised interpolation problem if there exists
a solution of (1.12) for any F e E™. Sp(A, M) is defined to be the set of ail
functions s € H such that s satisfies (1.12) for some 7 € £™,

The following result is then an easy consequence of Theorem 1.

COROLLARY 2. Let {¢;}\2} be as in Theorem 1. M generates a A-poised
problem if UQY-D {py ..., pr_y}. SP(A, M) is then a finite-dimensional subspace
of H of dimension m -+ dim{U(0) N spangp, ,..., ;_>}

The result of Theorem 1 does not give very practical conditions for existence
and uniqueness of Zl-splines in some cases. We now show that existence and
uniqueness is guaranteed provided M contains “enough” point evaluations.

We first prove the following easy estimates. Let @ = x; <y < Xp << -+~
< xy < Xyo1 = b be a partition of the interval {a, b], where 4, = x,,, — x,,
0 < /<N, and 4 = max; &; . Then, for all fe H,

I Dfifze

~

n—2,

{1.22)

N
<4 Y DFE)P A+ 2406 — )| DS, 0 <

i=1

N
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and
| D7 |72

<43 DT + 26— m (:2) | a@ioror ax,
i=1 (1.23)

where

(g, 8) = sup ’ | :H [8(y)l dy }

x,2+tela,bl

For,

D) = [ D@y de+ Dif(x),  for xeln, vl 1<i<H,

and
Difx) = — | DMY(1)di + Df(x),  for xela,xl.
Thus,
e <2 [[] D a] + D, 1<i<Aw,
and
1D < 3 [ 2[[] D@ ] + 0 Gar] ax .26
Similarly,

) D e < [ 2 [T D@ ar] + P d 029
Hence, for 0 <j <n — 2,

I DS otz < 200 — x0) A\ D" \oa,u -+ 2 Z [DFf (x)F 4,

fe=1

and
| Df Fotg,m < 200, — @) A\ D™ fforg,60 + 2D (DT 4,
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from which (1.22) follows. For the case j = » — 1, we have that

Um D‘”f(f)dt] = U . Va (}Vaﬁmw"f(r)] at] w26

< (5 4) [ s,

for all xex;, x:14), 0 <7 << N. The result of (1.23) follows as above from
{1.24)~(1.26).

TaeoreM 3. Fix a choice of ] for some 0 <{j < n— 1. Let
A g = 3 < 5P < P < o < xm mTl — b

denote a partition of la, b) such that {u;: p,f = Difix{™), 1 <i << N} T M.
Define hP = x, — x, 0 <i<N;, and 49 = max, h{". Assume :hat
there exists an x' € [a, b] such that MO {p,: p, /= DJ(x), 0 < i <j— 1}
Then for A9 sufficiently small, there exists a unigue A-spline interpolating ¥
with respect to M for each ¥ € E™.

Proof. We first show that for 49 sufficiently small, there exists a constant
L; > O such that || - |[; , defined from

lulg, = Baw)+ L, ¥ [u)P .27

HEM

is a norm on H, equivalent to || - ||, .
First, there exist constants C; > 0 such that
i~1
luffe <G [X DT + 1 Dulls], 0<j<n—1 (128)
Fos()
Since 49 < b — a, we have from (1.22) and (1.23) that
F

I u“?‘) C; [Z [Dku(x')]iz L A(p ~ a) S" {DJM(X(]))F

z——l
+2A0G — @) DPulhal, 0<j<n—2, (129

and

n—2 Nps

flu “i—l,z L Cpy [Z {Dklt'(x )]2 -+ 4(b — @) Z {Dﬁ-lu(xir—l})}‘

+ 2w, (;:; A1) —a) x | b a DR (130
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We complete the proof only in the cases 0 <{j <{n — 2. From (1.8), (1.29),
and (1.11), it follows that

Jully < B0 + CC [T IDUP + 46 — ) Y [Duxi)
k=0

2=1

1 . o ,
+2— A0G —ajuly], 0<j<n-—2

i+l

Thus, there exist constants L; > 0 such that

lull, < Bw,u)+ L, 3, [p@P+ LAY ul, 0<j<n—2

uneM

For all partitions 4% such that ;A9 < K < 1, it follows that
huld, =2 (0 — K| ulf .

By the continuity of the functionals of M, and the definition of || - ||, it
then follows immediately that the norms || -], and || - ||, are equivalent.

This result follows similarly if j = n — 1, as a consequence of (1.30) and
the fact that

b
lult,>a | au®IDuP dr
To show that (1.12) has a solution for 4% sufficiently small, we note that
minimizing B(u, u) over U(F) is equivalent to minimizing || u I3 over U(F).
But for 4% sufficiently small, H is a Hilbert space under || - |l,,, and U(F) is
a closed and convex subset of H. Thus, (1.12) has a unique solution.

2. CHARACTERIZATION

In cases where M consists only of point evaluations, A-splines can be
completely characterized as piecewise solutions of Au = 0, satisfying certain
generalized continuity conditions. The following definitions and results are
extensions of those of [7] to A-splines.

DEerINITION 3. We say that M = {u,}7., generates an Hermite—Birkhoff
(HB) interpolation problem if to each u; € M there corresponds a pair (x; , j;)
such that u,f = D¥if(x;), where ¢ <{ x;, < b and 0 < j; <n — 1. If for each
‘Lie~A[7

n—1
pif =Y, ayDf(xy),
J=0
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where the o,; are real and the vectors o; = (o g 5., ;.43 defining functionals
associated with the same point are linearly independent, then we say thas
M generates an Extended Hermite-Birkheff (EHB) interpolation problem.

We remark that an (HB) problem is a special case of an (EHB) problem.
Moreover, by definition, the linear functionals defining an (EHB) problem
are linearly independent, and, as a consequence of (1.9), continuous over #.

Let M generate a A-poised (EHB) interpolation problem. We wish to
state and prove a theorem characterizing Sp{4, M). The point x € [g, ] is
said to be a knot of s € Sp(A, M) if

n—1

uf= ) DY)

i=1
is in M for some choice of {a;}7 7.
We first show that s satisfies /s(x) = 0 in the intervals between the knots
a < xy < Xg << <X, < b of 5. Let ge C,%(x;, X;44). Since M generates

an (EHB) problem, then g € U(0). Hence, from (1.20), after integration by
parts

" () - g di. 2

vz

0= B(s,g) =

Since a,(x) > 0 for x € (a, b) it then follows from well-known arguments [6}
that As = 0 on (x;, X;.4)-

Let x €(a, b), s € Sp(A, M) and ge U@D) N C,*(x — ¢, x + ¢€). Then from
(1.20), we have that

k(3

0= ff Z a;(x) D’s(x) Dg(x) dx + fME Y. ai(x) Dis(x) Dig{xy dx. (2.2)

L€ j=0 Y =6

Defining

n—i~1
O = Z (— 1Y Difag 0, D7H5], (2.3

=0
then, upon integration by parts we have that

n—1
0= Y D0l 2.4

=0

where {f], = f(x+) — f(x—). The same relation holds at x = g or x = 5,
with [f], = f(a+) and [f], = —f(b—) provided the appropriate limits
exist.
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Let o = (o550, I < n be of rank / and let & be an n X n nonsingular
matrix obtained by augmenting «. Let 9 = (5,;) be the inverse of the adjoint
of & Then we have the following easy lemma [cf. 7].

LEMMA. Let
n—1 d § n—1
Miz &ii o and Rzz i:io'> Og\lgn"“l.
E& (dx) J.Z‘, it
Then

n—1 ) n—1
Y. Dig(x)[0s], = ), Mig()[R:s)e (2.5)
i=0 i=0

for all g € H and s € Sp(A, M).

Suppose x € [a, b] is a knot of s. Then there are /(x), 1 < I(x) < n, linear
functionals in M of the form

n—1
M®s = Y o (x) Dis(x), 0<i<Ix)—1, (2.6)

=0

where the {a(x) = (0;,o(X)seeer % n1(X)}e™ " are linearly independent. We
denote as [Rs], the quantity satisfying (2.5) with the M; as in (2.6).
We now state and prove a characterization theorem for /A-splines.

THEOREM 4. Let M = {u;}5, generate a A-poised (EHB) interpolation
problem. Let s € Sp(A, M) interpolate (ry ,..., I'n)" with respect to M. Then

(i) As(x) = 0, if x is not a knot,

(i) ps =r;, 1<iim,
(iii) [R™s], =0, Ix)<i<n—1,iffxisaknot, (2.7)
(iv) [0s], =0, 0 <i<<n—1if aisnot a knot,

™ [0s], =0, 0 <i<n—1ifbisnota knot,

provided the limits in (iv) and (V) exist and, if x = a or b, the limits in (iii).
Conversely, if s € H satisfies (2.7), then s is a A-spline interpolating (EHB)
data (r, ,..., 1,)7, provided (1.20) implies (1.12) has a solution.

Proof. (2.7 (i), (i)) have already been proven. (2.7 (iv), (v)) fol-
low directly from (2.4). To prove (2.7 (iii)), assume x € (q, b), and fix
J I(x) <j < n— 1. Choose € > 0 such that x is the only possible knot in
(x — €, x + €). There exists a function ge C,*(x — €, x + ¢) satisfying
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(g{x),..., ¥ Ux)T = (&) I; , where [; is the j-th column of the n X # unit
matrix. Thus, by construction, M{? g(x)=35;, 0<i<n—1, and
ge U{D). The result of (2.7) then follows from (2.4) and (2.5). The cases
when a and/or b are knots are handled similarly.

The converse follows from the fact that (2.7) implies that the orthogonality
relation of (1.20) is satisfied.

Since s € C*Ya, b], we have for, x € [a, b]

where { is a lower triangular matrix with -+a,(x) on the diagonal. Since
([RS51y souer [REUSIT = 9([O4S]z 5e-e» [0n_y51.T, then the equations (2.7 (iii)
represent # — /(x) linearly independent relations among the {[s,}2" % at
the point x (except at x = a or x = b).

CorOLLARY 3. If s is a A-spline corresponding to an (HB) interpolation
problem, and the I-th derivative (0 <! << n — 1) evaluated at the knot x is
not involved in the (HB) data, then [0Os), = O, where the limit is assumed o
existif x =aorb.

CoROLLARY 4. Let s be a A-spline corresponding to an (HB) interpolation
probiem, and suppose v denotes the order of the highest derivative specified
at a knot x<(a, b). Then [Dis], =0for0 <j<<2n — 2 — ».

In the special case 4 = (—1)2D?", we have the following.

COROLLARY 5. Let s be a A-spline with A = {(—1)"D?*, inierpolating (HB)
data; and suppose the I-th derivative 0 < [ < n — 1) is not specified at a knot x.
Then [D#"%5], = 0.

3. ERROR ESTIMATES

In this section we shall obtain error estimates for the approximation of
smooth functions by A-splines. We first make some definitions.

DermaTioN 4. feSp(A, M) is called an Sp(4, M)-interpolate of fe H
if uf = pf, forall pe M.

DEFINITION 5. Let M generate an (EHB) interpolation problem, and
{x;} be the corresponding knots. The subset 4 consisting of all x € {x,} such
that there exists u € M satisfying pf = f(x) is called the partition of [a, 5]
induced by M. If 4 is not empty, define 4 as the maximum length of the
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subintervals into which [a, b] is decomposed by the points of 4, and 4 as
the minimum such length. If x €4, let i(x) be defined as the maximum
positive integer such that there exists p, e M for which u,f = D*f(x) for
each 0 < k <i(x) — 1, and define y(4) by

yd) = Y i(x).

xed

THEOREM 5. Let fe H, let M generate a A-poised (EHB) interpolation
problem, and assume y(4) = n. If s is an Sp(A, M)-interpolate of f, then
B(f — s,f — s) is nonnegative for 4 sufficiently small and there exist positive
constants ¢; , 0 < j < n — 1, independent of f and A, such thas

| DU = Wataas < & [s (o), ndl] - @2 [BUF — s, = )],
" G.1)

In addition, if the hypotheses of Theorem 3 are satisfied for the j, of (1.7) then
) - 1 AP o .

| D = emte < & [ (-5 nd)] - @071, 0<j<n—1,

for 460 sufficiently small, where

wi(g, 8) = sup
xyxtte[e,b]
0<|é[ <0

han
[ isolar.

@x

Proof. Letd = {£, < & < --- < €y}, and s be any Sp(4, M) interpolate
of f. (s is not necessarily unique.) Since f— s e C*a, b], and y(4) = n,
we can apply a generalized Rolle’s theorem, i.¢., setting £ = £, ,0 < i < N,
there exist points 49 = {£15 in [a, b] such that

DIf (¢ — Dis(§") =0, O <IN, b<j<n—1 (32

j 3
where N =Ny >N, = -+ > N,_; >0, where the points of 4 satisfy
a < g(()j) < gii) < e <fl(\],; <b

and

£ < gD < g9 forall 0<I<N, and 0<j<n—2.

It follows immediately that | €7 — &7 | <(j+ D4, e — & | < (j+1)4,
and | b — 5553_1 < (j+ DA for any 0 <j<n— 1. For each such j, let
x; € [a, b] be such that

| DI(f(x) — s =1 DI(f — Yo,  O<j<<n—1. (33
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Since 49 = max,| Eh — €71 <+ 14, there is a point ¢{” such that
2 — £ < (j+ 1A, From (3.2) and (3.3), therefore,

I

1D — Y= = || DGO — sy |, 0<j<n—1 (8
{_.;(;u
For0 <j << n— 2, then

| DI(f — Yo < G-+ 1) B[ DHF — 5o,

and we have that

— | .
=D Ay et — ym,  0<j<n—2

P DI — sl < -
! (3.5

From {3.4) and the Schwarz inequality,

-1

1072 =)= ||

(n—1)
2

D(f(t) — s()) de |

<[fz:JCGLQ'V5353ﬂf@»¢qnﬂmr

< e 1o J" 4, (OID"[f () — s(O)IP dr.
= £ (1) g

Therefore,
| D — e < (2 ndl) - [ @ OIDLFG) — s@OIF dr. B.6)

But, from (1.10) and (1.11), there exists a positive constant K such that

ﬁ%@wwmrwmﬁm
SKIf—slp=KB(f—s5f—s)+Clf—slhd (T
Since

D —9)f S G — I DHf =9 O<k<n—1,
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we have from (3.5)-(3.7) that
[ awortse) - s ae

< KB(f — 5,f — 5) + KC(b — )Z[U’ DL @y

k!

X Wy (a—ln R nLT) . L a, (DD f — s]} de

For 4 sufficiently small, the coefficient of the second term on the right-hand
side can be made less than 1/2 for any j, <n — 1 (since 1/a, € Lt). Thus

|| (@) — sy dr <2KBG— /=) 69

for all 4 sufficiently small. Equations (3.5), (3.6) and (3.8) then give
| D(f — $)llp=
< VIR LDyt fun (1, nd)] BO - s p — 9
0<j<n—1 (39)

for all 4 sufficiently small.
To prove the second inequality in (3.1) we recall from the proof of
Theorem 3 that, if 49 is sufficiently small, then the norm

IfI3 = B(f.f)+ % (P, forall feH, (3.10)

neEM

is a norm on H equivalent to the norm, || - ||, . Thus, since,
B(f —s,f—s)=If—sl =1/% —lIslZ <Ifl3 <KIfIZ GI1D

the second inequality follows from the first. This completes the proof of the
theorem. We now obtain L,-norm error estimates.

THEOREM 6. Ler fe H,and let M generate a A-poised (EHB) interpolation
problem. We assume that v(4) = n. If s € Sp(A, M) interpolates f, then, for 4
sufficiently small, there exist positive constants ¢, 0 < j < n — 1, independent
of fand A, such that

HUU‘JM;<4”hﬁenmﬂraQWHWMf—gf—QW? (3.12)
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In addition, if the hypotheses of Theorem 3 are satisfied for the j, of {(1.7) thes
{ Al
1D(f = e < & [w, (o=»nd)] - @y, 0<j<n—1,
for AU sufficiently small and
b
[ a,IDn(f — )P de < cWB(f — 5,/ ~ 5) S e® [ . (3.12)

Proof. For any 0<<j<n—1, we have from (3.2) that D/(f — s
vanishes at £ for 0 <<I<CN;. Applying the Rayleigh-Ritz inequality
we have that

5(21 . ) n4a ml
[ 0 —sy0p dr < [LEDEY (" pios — syop ar
£
0<1<N]-, 0<j<<n—2, (3.3

since £, — £ < (j+ D4. Summing both sides with respect to I, we have
that

,(s) . T
[t —sora < [UEIE] Doy -9, o<j<n—2
(3.14

For j = n — 1, we cannot use the Rayleigh—Ritz inequality, since D*(f — 5)
is not necessarily in L2. However,

1§ D" f — Wapang

= lll ‘D’n——l(f'— S)Hiﬁ[alf‘()n—-l)]

Np_3—1
T Z ” Dn-—l(f__ S)”L [E(n—l) (n-l) + E[ Dn_l(f"" S\”_LZ E(n—i) b1 "

k=0
(3.15

For each x in the subinterval [ £7D],

Dr(f =) = [ ””m_ Dr(f — s)(n)dt

= [ ey VD D= D)
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Thus,
£ln-1)

1 = i .
(D4 — )P < v (- nd) [, aalD"(f — s)e) dt

3

and, integrating, we get that

| D=1 £ . 12
I} D f — s)] L2peln ), glnay
{r~1)

< (s nd)nd) - 7 a7 — s

for each 0 < k < N, — 1. However, foreach 0 <{j <{n — 1,

{7)

[ W0 — 0P de < 1€ — a1 D — )i

(3.16)

and using the fact that | £ — a | < (j+ 1)4, as well as (3.5) and (3.6),

el

[ i~
< eg@yrsrin, (2 ndl) [ a0 — siOF
with the similar inequality
{ fN [Di(f — SO dt
< ey, (-2 nd) [ a0t~ soOF de.

From (3.15)(3.18), we then have that

i D24 — sl
< cp@ w ()] "] aot00 - popaaf

3.17)

(3.18)

(3.19)

and using (3.8) and (3.11) the result of (3.12) follows for j ==n — 1. The
inequality (3.12) for 0 <Cj <{»n — 2 follows by induction using (3.14), (3.17)

and (3.18). The result of (3.12") follows directly from (3.8) and (3.11).

Suppose M generates a A-poised (EHB) interpolation problem. Let f be
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[#%]

such that Afe L?[a, b] (and also /' H), and let s be an Sp(A. M)-interpolatce
of f. Then, from Theorem 4, we have, upon integration by parts, that

B(f—s,f—s) = f (f — $)() - /If(x)d/\—k[z DAf— ) OAf — 5]

(3. "’Q}
whenever the limits [O,(f — $)]%7 exist, 0 <7/ <r — 1, and
MO {p;:pf=Dif(a)y 0O0<j<n—1}
Uip i pf=Dfb), O<j<n—1}
Then (3.20} becomes
B —s5f—) = [ (F= 90047 d, (3.2D)

which is known in the literature as the second integral relation. Higher order
error estimates for spline interpolation in general require the assumption of
the second integral relation.

TueorREM 7. Let fe H, Afe L2, and ler M generate a A-poised (EHB)
interpolation problem. We assume that v(4) = n, and that the second integral
relation of (3.21) is satisfied. If s € Sp(A, M) interpolates f, then for 4 sufficiently
small, there exist positive constants ¢, independent of f and 4, such thaz

| D = $)lum < @2 [y (-, )] Af s, O <j<n—1.

Proof. TFrom (3.21) and the Schwarz inequality,
B(f —s5,f—s) <|f— slle2 | Af e
But, from (3.12),
l AV ,
B(f 5,/ =) < € [wy (o> )] @ytRBG — 5. f — OFR L Af s
Thus,
1 1/2 _
(B = s f =P < & [y (=, nd)] - Ay s 3.2)

Using this in (3.1) then gives the result of (3.22).

TueoreM 8. Let f, M, s, and A satisfy the hypotheses of Theorem 7.

640/5/1-3
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Then, for 4 sufficiently small, there exist positive constants ¢®,0 <j <n — 1
independent of f and A, such that

. . 1 - ,
| DIf — s < (@it [y (=, )i Af s, O <j<nm—1,
and if the hypotheses of Theorem 3 are satisfied for the j, of (1.7) then
. 1 \ql/2
1S = slly < e@D22 [wy (-, nd)] 1 AfI (329)

Sor 4o sufficiently small where || - || is as defined in Theorem 3.
Proof. Follows Directly from (3.23), (3.12) and (1.27).

Remarks. (1) We wish to discuss briefly how the present paper extends
the concept of Lg-spline as contained in [7] and [8]. There, / was the differ-
ential operator L*L, and a,(x) = o > 0 for all x € [q, b].

First, we point out that for any A, satisfying (1.1) and (1.2), and any
bilinear form B, satisfying (1.6) and the property that /A is the associated
Euler operator, the entire theory that we have developed for the special
choice of B in (1.3) carries over, with obvious modifications in the definition
of the operators O; in (2.3). In particular, if /1 is of the form L*L then the
bilinear form

B'(u, u) = f " [Lu(o) dx

clearly has A as its Euler operator and, in addition, may readily be shown to
satisfy (1.6) with B’ in place of B. Here, it is not necessary, even, that L be
nonsingular. We require only that L*L satisfy (1.1) and (1.2). Now, since
the form B’ is obviously nonnegative, Theorem 1 implies the existence of
the spline in this case. If, in addition, L is nonsingular, the condition for
uniqueness of the spline in Theorem 1 reduces to the familar condition

N, N UQ) = (0),

where N, is the null space of L. This follows easily from the readily veri-
fiable fact that (1.18) is equivalent, in this case, to

(L*L + CD) p = Ap
DiLg(a) = DiLop(b) =0, 0<j<n—1,

(3.25)

which implies that C is an eigenvalue of (3.25) with corresponding eigenspace
precisely N .
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It is, of course, essential that forms more general than {1.3) be considered.
In particular, if A = —D? - I, then A = L*L, with L = D + [, and

B(u, u) = f ’ [Lu(x)P? dx

= jb [Du(x)P dx + 2 Jb u(xy Du(x) dx -+ ga [(O)1? dx.

a

On the other hand, the form B, defined by (1.3), yields in this case,
b &
B@@z}[&ﬁﬁk+!h@$ﬂ

which is also nonnegative. The functions minimizing the functionals B and B’
are not, in general, the same of course.

The y-elliptic splines of Schultz [11] are readily attainable by cur methods,
There it was assumed that A was nonsingular and coercive over the class H,
of functions in H whose derivatives through order n — 1 at # and b vanished,
i.e., B defined a norm equivalent to the Sobolev norm on H,; splines satis-
fying Hermite data were then defined, locally annihilated by 4, where
derivatives through order n — 1 were specified at a and 5. Qur own arguments
show that such splines can be obtained, since in this case B is nonnegative,
over H,; we simply minimize B over H, , subject to the Hermite constraints
corresponding to interior mesh points, with data decreased by the values
Dig(x,), where ¢ is the unique member of the null space of A satisfying
the 2x endpoint conditions. S == u + @, where u solves the minimization
problem, is the y-elliptic spline.

(2} We shall now include an example to iiluminate the previous theory.
For simplicity, we choose points 0 <x, < - <x, <1 and 0 <o <L
We consider the minimization problem

{ A1
min ” x°[Du(x)P dx @ u(x;) = v, 1</ mi (3.26)
¢ ]

in the space H = {u: f,l) x[Dru(x)Pdx = B{u, ) < oo}, Blu, u) is evidently
nonnegative and by Theorem 1 a solution s exists which is unique if m = ».
Furthermore, s € C2*2[0, 11N C*(0, x) U (xy, x2) - W (X, , 1)) and satisfies,
on each of the subintervals (0, xy), (33, Xo),... (8, 1), the differential
equation

(— DD (xe D s(x)) = . {3.27)

This implies that s is of the form

S(x) = agx2lme L xR0 L e g xneo L P () (3.28)
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where P,_; is a polynomial of degree » — 1, on each of the subintervals.
Moreover, on (0, x;) and (x,,, 1), s actually reduces to a polynomial of
degree n — 1, i.e., the coefficients oy ,..., ,_; are zero for these infervals.
This is not the case, however, if certain derivatives of orderj, 0 <{j <{n — 1,
are specified at 0 and 1. In this latter case, one can say that, if the j-th deriva-
tive is not specified at 0(1), then D"—-Y(x°D"s)(x) approaches zero as x tends
to 0(1). In particular, this implies that «; = 0 in the representation on (0, x,).

(3) If the linear equality constraints of Theorem 7 are exclusively
of full Hermite type, i.e., derivatives of order through n — 1 are specified
at each knot, then the exponent of 4 in (3.22) can be improved by one-half
unity (see, e.g., Dailey [3]) provided Afis bounded.
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